PTFE/Woven Fiberglass/Ceramic Filled Laminate for Microwave Printed Circuit Boards

Features:
- Ideal for Microwave Components and Chip Packaging Applications
- High Thermal Conductivity
- Panel Sizes up to 18" x 24"
- Thin Dielectric Material

Benefits:
- Efficient, High Yield Fabrication
- Image, Print and Etch Both Sides Simultaneously (Eliminates the Need for Sequential Lamination)
- Circuit Miniaturization
- Heat Dissipation and Management
- Replaces Ceramic in Some Applications

Typical Applications:
- Miniaturized Couplers and Feed Networks
- LNAs, LNBs, Pas
- Robust Alternative to Ceramic

At 0.0024" and 10.2 Er, AD10 is ARLON’s new ultra thin high dielectric constant product comprised of a ceramic filled PTFE on lightweight woven glass reinforcement. AD10's high Er and thin dielectric permits various degrees of circuit miniaturization and is ideal for microwave components. In particular, miniaturized couplers and in-situ PCB-based discrete capacitors.

AD10 is a “soft” substrate and is relatively insensitive to stress from vibration. This allows miniaturized circuitry without requiring complicated processing or fragile handling associated with brittle, pure ceramic substrate materials. Because it is based on woven glass reinforcement, AD10 offers improved efficiency and yield versus other thin high Er soft substrate materials.
<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant @ 10 GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>10.2</td>
</tr>
<tr>
<td>Dissipation Factor @ 10 GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>0.0078</td>
</tr>
<tr>
<td>Thermal Coefficient of Er (ppm/°C)</td>
<td>IPC TM-650 2.5.5.5</td>
<td>-10°C to +140°C</td>
<td>-422.7</td>
</tr>
<tr>
<td>Copper Peel Strength (½ oz, 1 oz) (lb/in)</td>
<td>IPC TM-650 2.4.8</td>
<td>A, TS</td>
<td>4</td>
</tr>
<tr>
<td>Volume Resistivity (MΩ-cm)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>>10⁹</td>
</tr>
<tr>
<td>Surface Resistivity (MΩ)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>>10⁹</td>
</tr>
<tr>
<td>Arc Resistance (seconds)</td>
<td>IPC TM-650 2.5.1B</td>
<td>D48/50</td>
<td>>180</td>
</tr>
<tr>
<td>Tensile Modulus (kpsi)</td>
<td>ASTM D-638</td>
<td>A, 23°C</td>
<td>>600</td>
</tr>
<tr>
<td>Tensile Strength (kpsi)</td>
<td>IPC TM-650 2.4.18</td>
<td>A, 23°C</td>
<td>>4.0</td>
</tr>
<tr>
<td>Compressive Modulus (kpsi)</td>
<td>ASTM D-695</td>
<td>A, 23°C</td>
<td>>400</td>
</tr>
<tr>
<td>Flexural Modulus (kpsi)</td>
<td>ASTM D-790</td>
<td>A, 23°C</td>
<td>>600</td>
</tr>
<tr>
<td>Dielectric Breakdown (kV)</td>
<td>ASTM D-149</td>
<td>D48/50</td>
<td>>45</td>
</tr>
<tr>
<td>Density (g/cm³)</td>
<td>ASTM D-792 Method A</td>
<td>A, 23°C</td>
<td>2.80</td>
</tr>
<tr>
<td>Water Absorption (%)</td>
<td>IPC TM-650 2.6.2.2</td>
<td>E1/105 + D24/23</td>
<td>0.03</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion (ppm/°C)</td>
<td>IPC TM-650 2.4.24</td>
<td>TMA</td>
<td>0°C to 100°C</td>
</tr>
<tr>
<td>x Axis</td>
<td></td>
<td></td>
<td>5.8</td>
</tr>
<tr>
<td>y Axis</td>
<td></td>
<td></td>
<td>8.2</td>
</tr>
<tr>
<td>z Axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity (W/mK)</td>
<td>ASTM E-1225</td>
<td>100°C</td>
<td>0.55</td>
</tr>
<tr>
<td>Flammability</td>
<td>UL 94 Vertical Burn</td>
<td>C48/23/50, E24/125</td>
<td>UL94-V0</td>
</tr>
</tbody>
</table>

Material Availability:
AD10 laminate is supplied with ½ ounce or one ounce, reverse treat, electrodeposited copper on both sides. Available in 0.0024 thicknesses.

When ordering AD10 product, please specify cladding, panel size, and any other special considerations. Available in 18” x 24” panel size.

Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary, depending on the design and application.
AD10 Laminate

Figure 1

Demonstrates the Stability of Dielectric Constant across Frequency. This information was correlated from data generated by using a free space and circular resonator cavity. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, thus simplifying the final design process when working across EM spectrum. The stability of the Dielectric Constant of AD10 over frequency ensures easy design transition and scalability of design.

Figure 2

Demonstrates the Stability of Dissipation Factor across Frequency. This characteristic demonstrates the inherent robustness of Arlon Laminates across Frequency, providing a stable platform for high frequency applications where signal integrity is critical to the overall performance of the application.

Results listed above are typical properties; they are not to be used as specification limits. The above information creates no expressed or implied warranties. The properties of Arlon laminates may vary, depending on the design and application.
CONTACT INFORMATION:

For samples, technical assistance, customer service or for more information, please contact Arlon Materials for Electronics Division at the following locations:

NORTH AMERICA:
Arlon, Inc.
Electronic Substrates
9433 Hyssop Drive
Rancho Cucamonga, CA 91730
Tel: (909) 987-9533
Fax: (909) 987-8541

Arlon, Inc.
Microwave Materials
1100 Governor Lea Road
Bear, DE 19701
Tel: (800) 635-9333
Outside U.S. & Canada: (302) 834-2100
Fax: (302) 834-2574

SOUTHERN CHINA:
Arlon, Inc.
Room 805, Unit 3, Bldg 4
Liyuan, Xincun Holiday Road
Huaqiao Cheng. Shenzhen 518053
China
Tel/Fax: (86) 755-269-066-12

EUROPE:
Arlon, Inc.
44 Wilby Avenue
Little Lever
Bolton, Lancaster BL3 1QE
United Kingdom
Tel: (44) 120-457-6068
Fax: (44) 120-479-6463

NORTHERN CHINA:
Arlon, Inc.
Room 11/401, No. 8
Hong Gu Road
Shanghai, China 200336
Tel/Fax: (86) 21-6209-0202

Or visit us on the web at:
www.arlon-med.com