PTFE/Woven Fiberglass/Micro-Ceramic Filled Laminate for RF & Microwave Printed Circuit Boards

Features:
- Low Loss Ceramic Filled PTFE
- Dielectric Constant (4.10)
- High Thermal Conductivity
- Very Low Z-Direction CTE
- Large Panel Sizes Available
- Low Thermal Coefficient of Er

Benefits:
- Superior PTH adhesion
- Excellent Heat Dissipation and Heat Management
- Multiple boards/panel (reduced edge trim waste)
- Large antenna formats

Typical Applications:
- Applications Requiring Low Loss and Some Degree of Miniaturization
- Replacement for lossier (and frequency limited) FR-4, ceramic/epoxy thermosets and ceramic filled hydrocarbons
- Satellite Radio Antennas (DAB)
- GPS Antennas
- RFID Reader Antennas
- Electronic Surveillance, SIGINT and other RF Applications
- Multimedia Transmission Systems

Arlon’s Next Generation AD410 is a woven fiberglass reinforced, ceramic filled, PTFE-based composite material for use as a printed circuit board substrate. It has been developed to provide high thermal conductivity, low thermal expansion and strong interlaminar and copper bond integrity.

The electrical properties of AD410 are highly desired in applications where higher frequency and expectations for increased fidelity with broadband signals are beyond the performance capabilities offered by FR-4, ceramic/epoxy thermosets and ceramic filled hydrocarbons.

Its higher thermal conductivity and low CTE promote its use in higher power designs, where temperature extremes are normal and heat rejection is a primary consideration. Its lower CTE offers better component attachment reliability as well.

AD410 is compatible with the processing used for standard PTFE based printed circuit board substrates. Its low Z-axis thermal expansion improves plated through hole reliability compared to typical PTFE based laminates. Low X-Y expansion improves BGA solder-joint reliability.

AD410’s Low Thermal Coefficient of Er is also ideal for applications that experience diverse temperature changes (Aviation, Space, etc.) and are also sensitive to Phase Stability (Phase Fed Apertures).
Typical Properties: AD410

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric Constant @10GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>4.10</td>
</tr>
<tr>
<td>Loss Tangent @10 GHz</td>
<td>IPC TM-650 2.5.5.5</td>
<td>C23/50</td>
<td>0.003</td>
</tr>
<tr>
<td>Thermal Coefficient of εr</td>
<td>IPC TM-650 2.5.5.5</td>
<td>-10°C to +140°C</td>
<td>- 55</td>
</tr>
<tr>
<td>Copper peel Strength (1oz) lbs (lbs. per linear inch)</td>
<td>IPC TM-650 2.4.8</td>
<td>A, TS</td>
<td>17</td>
</tr>
<tr>
<td>Volume Resistivity (MΩ-cm)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>1.2 x 10^9</td>
</tr>
<tr>
<td>Surface Resistivity (MΩ)</td>
<td>IPC TM-650 2.5.17.1</td>
<td>C96/35/90</td>
<td>4.5 x 10^7</td>
</tr>
<tr>
<td>Arc Resistance (seconds)</td>
<td>ASTM D-495</td>
<td>D48/50</td>
<td>>180</td>
</tr>
<tr>
<td>Tensile Modulus (kpsi)</td>
<td>ASTM D-638</td>
<td>A, 23°C</td>
<td>> 700</td>
</tr>
<tr>
<td>Tensile Strength (kpsi)</td>
<td>IPC TM-650 2.4.18</td>
<td>A, 23°C</td>
<td>> 20</td>
</tr>
<tr>
<td>Compressive Modulus (kpsi)</td>
<td>ASTM D-695</td>
<td>A, 23°C</td>
<td>> 350</td>
</tr>
<tr>
<td>Flexural Modulus (kpsi)</td>
<td>ASTM D-790</td>
<td>A, 23°C</td>
<td>> 540</td>
</tr>
<tr>
<td>Dielectric Breakdown (kV)</td>
<td>ASTM D-149</td>
<td>D48/50</td>
<td>> 45</td>
</tr>
<tr>
<td>Specific Gravity (g/cm³)</td>
<td>ASTM D-792 Method A</td>
<td>A, 23°C</td>
<td>2.10</td>
</tr>
<tr>
<td>Water Absorption (%)</td>
<td>IPC TM-650 2.6.2.2</td>
<td>E1/105 + D24/23</td>
<td>0.06</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion (ppm/°C)</td>
<td>IPC TM-650 2.4.24</td>
<td>0°C to 100°C</td>
<td>9</td>
</tr>
<tr>
<td>X Axis</td>
<td>TMA</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Y Axis</td>
<td></td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>Z Axis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Conductivity (W/mK)</td>
<td>ASTM E-1225</td>
<td>100°C</td>
<td>0.46</td>
</tr>
<tr>
<td>Flammability</td>
<td>UL 94 Vertical Burn</td>
<td>C48/23/50, E24/125</td>
<td>UL94-V0</td>
</tr>
</tbody>
</table>

Material Availability:

Current Standard Production is been based on 0.062” and 0.125” thickness designs. Other thicknesses may be available. Please contact Arlon Customer Service to discuss your application.

AD410 is supplied with 1/2, 1 or 2 ounce electrodeposited copper on both sides. Other copper weights and rolled copper foil are available. AD410 is also available bonded to heavy metal ground planes. Aluminum, brass or copper plate can provide an integral heat sink and mechanical support to the substrate.

When ordering AD410, specify dielectric thickness, cladding, panel size and any other special considerations. Typical Panels are cut from a Master Sheet. The master sheet is limited to 36” x 48” and 36” x 72”. Typical panel sizes cut from a master sheet include: 12” x 18”, 18” X 24”, 16” X 18”. Custom sizes are available.
CONTACT INFORMATION:

For samples, technical assistance, customer service or for more information, please contact Arlon Materials for Electronics Division at the following locations:

NORTH AMERICA:
Arlon, Inc.
Enterm Substrates
9433 Hyssop Drive
Rancho Cucamonga, CA 91730
Tel: (909) 987-9533
Fax: (909) 987-8541

Arlon, Inc.
Microwave Materials
1100 Governor Lea Road
Bear, DE 19701
Tel: (800) 635-9333
Outside U.S. & Canada: (302) 834-2100
Fax: (302) 834-2574

SOUTHERN CHINA:
Arlon, Inc.
Room 805, Unit 3, Bldg 4
Lyuqian, Xincun Holiday Road
Huaqiao Cheng, Shenzhen 518053
China
Tel/Fax: (86) 755-269-066-12

NORTHERN CHINA:
Arlon, Inc.
Room 11/401, No. 8
Hong Gu Road
Shanghai, China 200336
Tel/Fax: (86) 21-6209-0202

EUROPE:
Arlon, Inc.
Wilby Avenue
44 Little Lever
Bolton, Lancashire BL31QE
United Kingdom
Tel: (44) 120-457-6068
Fax: (44) 120-479-6463

Or visit us on the web at:
www.arlon-med.com